1、博众未来教育
2、龙文教育
3、学大教育
4、秦学教育
5、金博教育
6、京誉教育
7、精勤教育
8、锐思教育
9、戴氏教育
10、新东方教育
以上内容来源于网络,仅供大家参考
初中语文阅读理解解题技巧与方法,语文阅读理解题是一种综合性的题型,它能有效地检测学生的阅读理解能力和语文素质,答案基本考虑成熟之后,还需要注意一下表述的语言,语言简洁明了,能达到事半功倍的效果;重复罗嗦,不得要领,往往会出力不讨好,在答题之后,如果时间允许,要重读。
教学模式
1.一对一教学
一对一教学,根据每一个孩子不同的个性特征、学习因素等,为孩子量身定制出一套有针对性的一对一指导方案。
在教学上,老师十分注重硬技能和软技能之间的结合。
硬技能:学生学习必须了解的知识点、必须达到的基础要求。
软技能:学习心态、学习习惯、学习方法等多维度辅导,从而达到综合提升,全面发展的目的。
2.小组课教学
小组课是一对一服务的延伸,实施4-8人的小班课教学的授课模式。
小组课的每一个学员享有专属的教学团队、教学方案和服务团队。学生之间也能相互学习并形成良性竞争,最终达到尊重每个学生个性化学习的教学目的。
互动频次高,孩子吸收有保障
4-8人的小班课教学,老师关注度高,针对性强
课上增设问答环节,激发孩子主动学习
1;基础不扎实,初三跟不上学习节奏、听不懂课程;
2;孩子因某些原因落下课程,回学校也跟不上,想全面系统重新备考中考;
3:孩子进步缓慢甚至没有进步,焦虑状态不好;
4:孩子想在初三冲刺取得较大提升;
5:孩子不适应学校大班教学,想换个地方学习;
- 代/数/式/初/步/认/识 -
1. 代数式
用运算符号+ - × ÷ …… 连接数及表示数的字母的式子称为代数式。
注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。
2. 列代数式的几个注意事项
(1)数与字母相乘,或字母与字母相乘通常使用· 乘,或省略不写。
(2)数与数相乘,仍应使用×乘,不用· 乘,也不能省略乘号。
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a
出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成图片的形式;
(4)在代数式中
(5)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .
3. 几个重要的代数式
(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2
(2)若a、b、c是正整数,则两位整数是:10a+b;则三位整数是:100a+10b+c。
(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1。
(4)若b>0,则正数是:a2+b ,负数是:-a2-b,非负数是:b2 ,非正数是:-b2 。
- 有/理/数 -
1. 有理数
(1)凡能写成图片(a、b都是整数且a≠0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。(注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数)
(2)有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。
(3)自然数是指0和正整数;a>0,则a是正数;a<0,则a是负数;a≥0 ,则a是正数或0(即a是非负数);a≤0,则a是负数或0(即a是非正数)。
2. 数轴
数轴是规定了原点、正方向、单位长度的一条直线.
3. 相反数
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。
(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
(3)相反数的和为0时,则a+b=0;即a、b互为相反数。
4. 绝对值
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。(注意:绝对值的意义是数轴上表示某数的点离开原点的距离)。
(2)绝对值可表示为|a|。
(3)|a|是重要的非负数,即|a|≥0。(注意:|a|·|b|=|a·b|)。
5. 有理数比大小
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数 > 0,小数-大数< 0.
6. 互为倒数
乘积为1的两个数互为倒数。(注意:0没有倒数;若 a、b≠0,那么图片的倒数是图片;倒数是本身的数是±1;若ab=1,则a、b互为倒数;若ab=-1,则a、b互为负倒数。
7. 有理数加减法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数与0相加,仍得这个数。
8. 有理数加减的运算律
(1)加法的交换律:a+b=b+a 。
(2)加法的结合律:(a+b)+c=a+(b+c)。
9. 有理数乘法法则
减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
10. 有理数乘法法则
(1)两数相乘,同号为正,异号为负,并把绝对值相乘。
(2)任何数同零相乘都得零。
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
11. 有理数乘法的运算律
(1)乘法的交换律:ab=ba。
(2)乘法的结合律:(ab)c=a(bc)。
(3)乘法的分配律:a(b+c)=ab+ac。
12. 有理数除法法则
除以一个数等于乘以这个数的倒数。(注意:零不能做除数)
13. 有理数乘方的法则
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数。注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n。
14. 乘方的定义
(1)求相同因式积的运算,叫做乘方。
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂。
温馨提示:为不影响您的学习和咨询,来校区前请先电话或微信咨询,方便我校安排相关的专业老师为您解答(也可点击下方预约试听)
Copyright © 2016-2025 aixuequan.com All rights reserved. 网站备案号:豫ICP备2022021264号
该文章有用户自行上传发布,如有侵权内容请及时联系我们将第一时间删除。